76 research outputs found

    The Impact of Post-transcriptional Control: Better Living Through RNA Regulons

    Get PDF
    Traditionally, cancer is viewed as a disease driven by genetic mutations and/or epigenetic and transcriptional dysregulation. While these are undoubtedly important drivers, many recent studies highlight the disconnect between the proteome and the genome or transcriptome. At least in part, this disconnect arises as a result of dysregulated RNA metabolism which underpins the altered proteomic landscape observed. Thus, it is important to understand the basic mechanisms governing post-transcriptional control and how these processes can be co-opted to drive cancer cell phenotypes. In some cases, groups of mRNAs that encode protein involved in specific oncogenic processes can be co-regulated at multiple processing levels in order to turn on entire biochemical pathways. Indeed, the RNA regulon model was postulated as a means to understand how cells coordinately regulate transcripts encoding proteins in the same biochemical pathways. In this review, we describe some of the basic mRNA processes that are dysregulated in cancer and the biological impact this has on the cell. This dysregulation can affect networks of RNAs simultaneously thereby underpinning the oncogenic phenotypes observed

    EIF4E (eukaryotic translation initiation factor 4E)

    Get PDF
    Review on EIF4E (eukaryotic translation initiation factor 4E), with data on DNA, on the protein encoded, and where the gene is implicated

    Identification and characterization of the interaction between the methyl-7-guanosine cap maturation enzyme RNMT and the cap-binding protein eIF4E

    Get PDF
    The control of RNA metabolism is an important aspect of molecular biology with wide-ranging impacts on cells. Central to processing of coding RNAs is the addition of the methyl-7 guanosine (m(7)G) β€œcap” on their 5’ end. The eukaryotic translation initiation factor eIF4E directly binds the m(7)G cap and through this interaction plays key roles in many steps of RNA metabolism including nuclear RNA export and translation. eIF4E also stimulates capping of many transcripts through its ability to drive the production of the enzyme RNMT which methylates the G-cap to form the mature m(7)G cap. Here, we found that eIF4E also physically associated with RNMT in human cells. Moreover, eIF4E directly interacted with RNMT in vitro. eIF4E is only the second protein reported to directly bind the methyltransferase domain of RNMT, the first being its co-factor RAM. We combined high-resolution NMR methods with biochemical studies to define the binding interfaces for the RNMT-eIF4E complex. Further, we found that eIF4E competes for RAM binding to RNMT and conversely, RNMT competes for binding of well-established eIF4E-binding partners such as the 4E-BPs. RNMT uses novel structural means to engage eIF4E. Finally, we observed that m(7)G cap-eIF4E-RNMT trimeric complexes form, and thus RNMT-eIF4E complexes may be employed so that eIF4E captures newly capped RNA. In all, we show for the first time that the cap-binding protein eIF4E directly binds to the cap-maturation enzyme RNMT

    Expression of phosphorylated eIF4E-binding protein 1, but not of eIF4E itself, predicts survival in male breast cancer

    Get PDF
    Background: Male breast cancer is rare and treatment is based on data from females. High expression/activity of eukaryotic initiation factor 4E (eIF4E) denotes a poor prognosis in female breast cancer, and the eIF4E pathway has been targeted therapeutically. eIF4E activity in female breast cancer is deregulated by eIF4E over-expression and by phosphorylation of its binding protein, 4E-BP1, which relieves inhibitory association between eIF4E and 4E-BP1. The relevance of the eIF4E pathway in male breast cancer is unknown. Methods: We have assessed expression levels of eIF4E, 4E-BP1, 4E-BP2 and phosphorylated 4E-BP1 (p4E-BP1) using immunohistochemistry in a large cohort of male breast cancers (n=337) and have examined correlations with prognostic factors and survival. Results: Neither eIF4E expression or estimated eIF4E activity were associated with prognosis. However, a highly significant correlation was found between p4E-BP1 expression and disease-free survival, linking any detectable p4E-BP1 with poor survival (univariate log rank p=0.001; multivariate HR 8.8, p=0.0001). Conclusions: Our data provide no support for direct therapeutic targeting of eIF4E in male breast cancer, unlike in females. However, as p4E-BP1 gives powerful prognostic insights that are unrelated to eIF4E function, p4E-BP1 may identify male breast cancers potentially suitable for therapies directed at the upstream kinase, mTOR

    Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure

    Get PDF
    Aberrant activation of the translation initiation machinery is a common property of malignant cells, and is essential for breast carcinoma cells to manifest a malignant phenotype. How does sustained activation of the rate limiting step in protein synthesis so fundamentally alter a cell? In this report, we test the post transcriptional operon theory as a possible mechanism, employing a model system in which apoptosis resistance is conferred on NIH 3T3 cells by ectopic expression of eIF4E. We show (i) there is a set of 255 transcripts that manifest an increase in translational efficiency during eIF4E-mediated escape from apoptosis; (ii) there is a novel prototype 55 nt RNA consensus hairpin structure that is overrepresented in the 5β€²-untranslated region of translationally activated transcripts; (iii) the identified consensus hairpin structure is sufficient to target a reporter mRNA for translational activation under pro-apoptotic stress, but only when eIF4E is deregulated; and (iv) that osteopontin, one of the translationally activated transcripts harboring the identified consensus hairpin structure functions as one mediator of the apoptosis resistance seen in our model. Our findings offer genome-wide insights into the mechanism of eIF4E-mediated apoptosis resistance and provide a paradigm for the systematic study of posttranscriptional control in normal biology and disease

    Functional Characterization of the HuR:CD83 mRNA Interaction

    Get PDF
    Maturation of dendritic cells (DC) is characterized by expression of CD83, a surface protein that appears to be necessary for the effective activation of naΓ―ve T-cells and T-helper cells by DC. Lately it was shown that CD83 expression is regulated on the posttranscriptional level by interaction of the shuttle protein HuR with a novel posttranscriptional regulatory RNA element (PRE), which is located in the coding region of the CD83 transcript. Interestingly, this interaction commits the CD83 mRNA to efficient nuclear export via the CRM1 pathway. To date, however, the structural basis of this interaction, which potentially involves three distinct RNA recognition motifs (RRM1–3) in HuR and a complex three-pronged RNA stem-loop element in CD83 mRNA, has not been investigated in detail. In the present work we analyzed this interaction in vitro and in vivo using various HuR- and CD83 mRNA mutants. We are able to demonstrate that both, RRM1 and RRM2 are crucial for binding, whereas RRM3 as well as the HuR hinge region contributed only marginally to this protein∢RNA interaction. Furthermore, mutation of uridine rich patches within the PRE did not disturb HuR:CD83 mRNA complex formation while, in contrast, the deletion of specific PRE subfragments from the CD83 mRNA prevented HuR binding in vitro and in vivo. Interestingly, the observed inhibition of HuR binding to CD83 mRNA does not lead to a nuclear trapping of the transcript but rather redirected this transcript from the CRM1- towards the NXF1/TAP-specific nuclear export pathway. Thus, the presence of a functional PRE permits nucleocytoplasmic trafficking of the CD83 transcript via the CRM1 pathway

    Thriving under Stress: Selective Translation of HIV-1 Structural Protein mRNA during Vpr-Mediated Impairment of eIF4E Translation Activity

    Get PDF
    Translation is a regulated process and is pivotal to proper cell growth and homeostasis. All retroviruses rely on the host translational machinery for viral protein synthesis and thus may be susceptible to its perturbation in response to stress, co-infection, and/or cell cycle arrest. HIV-1 infection arrests the cell cycle in the G2/M phase, potentially disrupting the regulation of host cell translation. In this study, we present evidence that HIV-1 infection downregulates translation in lymphocytes, attributable to the cell cycle arrest induced by the HIV-1 accessory protein Vpr. The molecular basis of the translation suppression is reduced accumulation of the active form of the translation initiation factor 4E (eIF4E). However, synthesis of viral structural proteins is sustained despite the general suppression of protein production. HIV-1 mRNA translation is sustained due to the distinct composition of the HIV-1 ribonucleoprotein complexes. RNA-coimmunoprecipitation assays determined that the HIV-1 unspliced and singly spliced transcripts are predominantly associated with nuclear cap binding protein 80 (CBP80) in contrast to completely-spliced viral and cellular mRNAs that are associated with eIF4E. The active translation of the nuclear cap binding complex (CBC)-bound viral mRNAs is demonstrated by ribosomal RNA profile analyses. Thus, our findings have uncovered that the maintenance of CBC association is a novel mechanism used by HIV-1 to bypass downregulation of eIF4E activity and sustain viral protein synthesis. We speculate that a subset of CBP80-bound cellular mRNAs contribute to recovery from significant cellular stress, including human retrovirus infection
    • …
    corecore